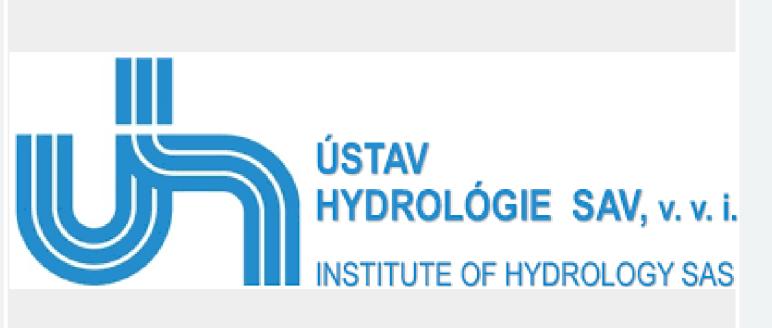
Enhancing Sandy Soil Resilience to Drought through Biochar


AUTHORS

Monica Shree Chandramohan^{1*}, Peter Šurda¹, and Justína Vitková¹

*cmshree92@gmail.com, chandramohan@uh.savba.sk

AFFILIATIONS

¹Insititute of Hydrology SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic

INTRODUCTION

Sandy soils are globally significant in agricultural areas but are inherently vulnerable to drought due to their low water retention capacity and high saturated hydraulic conductivity (Ks). This vulnerability is compounded by Soil Water Repellency (SWR), a condition where hydrophobic organic compounds on soil particles resist wetting, severely limiting water infiltration and plant water availability.

To build climate resilience and sustain agricultural productivity, innovative soil management strategies are critically needed. Biochar (BC), a porous, carbonrich soil amendment, offers a promising adaptation solution. This study investigates the potential of biochar addition to sandy soils to improve key hydrophysical properties, thereby enhancing the soil's capacity to withstand drought and climate variability.

METHODOLOGY

A. Soil and Biochar Materials:

- **Soil**: Sandy soil (Aeolic Arenosol) with very low organic carbon content (≈0.04%), collected from Plavecký Štvrtok, Slovakia.
- Biochars: Two studies utilized biochars produced under different conditions to assess key factors:
 - Study 1 (Surda et al., 2025): Compared the effect of water-repellent willow biochar produced from the Swedish biomass willow variety - Salix viminalis x schwerinii var. Tordis (B300 at 300°C, B520 at 520°C) and a wettable fiber sludge/grain husk biochar (B550 at 550°C). All were applied at a 1% w/w rate with a 125 µm-2 mm particle size.
 - Study 2 (Vitková et al., 2024): Used willow biochar produced at 300°C and 520°C to test the influence of application rate (20 and 40 Mg ha-1) and particle size ($<125 \mu m$ and $125 \mu m$ -2 mm).

B. Measured Hydrophysical Parameters:

- Porosity (P): Calculated from bulk and particle density.
 Available Water Content (AWC): Determined as the difference between field capacity (10 kPa) and permanent wilting point (1500 kPa) from Soil Water Retention Curves (SWRC).
- Saturated Hydraulic Conductivity (K_s): Measured using the modified fallinghead method.
- Soil Water Repellency (SWR): Assessed by Contact Angle (CA) (severity) using the sessile drop method, and Water Drop Penetration Time (WDPT) (persistence).

OBJECTIVE

To systematically assess how biochar application rate, particle size, and pyrolysis temperature influence soil water retention, hydraulic conductivity, and water repellency in sandy substrates.

RESULTS AND DISCUSSION

The addition of biochar to sandy soil significantly improved key parameters related to drought resilience across both studies, although with strong dependence on the biochar's properties.

Table 1 Characteristics of biochar (C- carbon content, H- hydrogen content, N- nitrogen content, WDPT- water drop penetration time, CA- contact angle). (Source: Šurda et al., 2025)

_						
Biochar	Product of origin	C [%] NR=3	H [%] NR=3	N[%] NR=3	WDPT [s] NR = 5	CA [°] NR = 5
B300	willow	82.2	2.74	0.86	12609.5 ^a	115.56 ^a
B520	willow	83.1	2.21	1.19	12613.8 ^a	128.30 ^b
B550	fiber sludge and grain husks	53.1	1.84	1.4	1.75 ^b	27.77°

Sl.No.	Parameter	Biochar Effect	Key Findings (Vitková et al., 2024)	Key Findings (Surda et al., 2025)	
1.	Available Water Content (AWC)	Significant Increase (up to 168% higher than control).	AWC was significantly affected by rate, size, and temperature. The highest increase was seen at the 40 Mg ha–1 rate and with smaller BC particles (<125 µm).	AWC significantly increased in all BC treatments, nearly doubling the controvalue. No significant difference was found between hydrophobic (SB300, SB520) and wettable (SB550) types.	
2.	Saturated Hydraulic Conductivity (K _S)	Significant Decrease (up to 90% reduction).	K _s was significantly decreased by all factors (rate, size, temperature). The smallest BC particle size (<125 μm) caused the greatest reduction, likely by clogging large pores.	Hydrophobic BCs (SB300, SB520) caused a statistically significant K _s decrease. Wettable BC (SB550) caused an insignificant K _s decrease.	
3.	Porosity (P)	Increase.	P was significantly increased, but the effect depended on interactions between temperature and rate, and size and rate. The large-sized BC (125 µm-2 mm) caused the greatest increase.	P significantly increased in all BC treatments.	
4.	Contact Angle (CA)	Increase.	CA was significantly affected by rate and particle size , but not pyrolysis temperature. The small-sized BC (<125 µm) and higher application rate (40 Mg ha–1) increased CA the most.	The Hydrophobic BCs (SB300, SB520) induced a slight severity of water repellency (40°≤CA<90°) in the soil mixture, while the wettable BC (SB550) mixture remained wettable (CA<40°).	

Biochar enhances drought resilience primarily by increasing AWC and reducing K_s.

- The increased Available Water Content is crucial for drought mitigation, confirming biochar's role as a climate-smart amendment. This is attributed to the BC's porous structure increasing soil micro-porosity.
- The significant reduction in K_S is beneficial for sandy soils, as it slows water movement and reduces deep drainage losses, making more water available to plants. The finest BC fraction was most effective at reducing K_S, likely by filling large conductive pores.

KEY CLIMATE ADAPTATION STRATEGY:

To maximize soil water resilience in drought-prone areas, a climate-smart biochar strategy should focus on:

- 1. High Application Rates (40 Mg ha-1 demonstrated better AWC).
- 2. Smaller Particle Sizes (<125 μm) to maximize water ? retention (AWC) and reduce deep drainage (K_s).
- 3. Hydrophobicity Assessment is mandatory, as even slightly water-repellent BC can hinder water movement.

This research provides experimental evidence that optimized biochar application is a viable, climate-smart strategy for improving soil hydrophysical dynamics and securing productivity in sandy, drought-vulnerable landscapes.

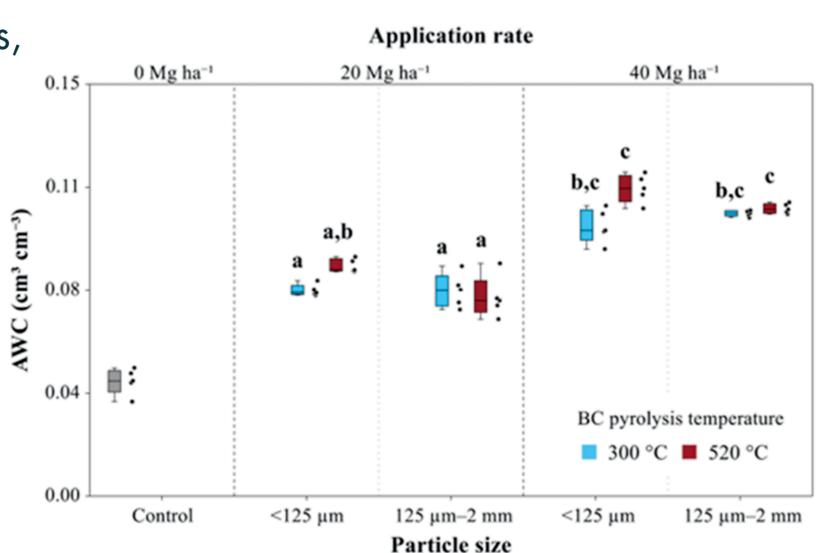


Figure 1: Measured values of the available water content for plants (AWC) for all experiment treatments. (Source: Vitková et al., 2024)

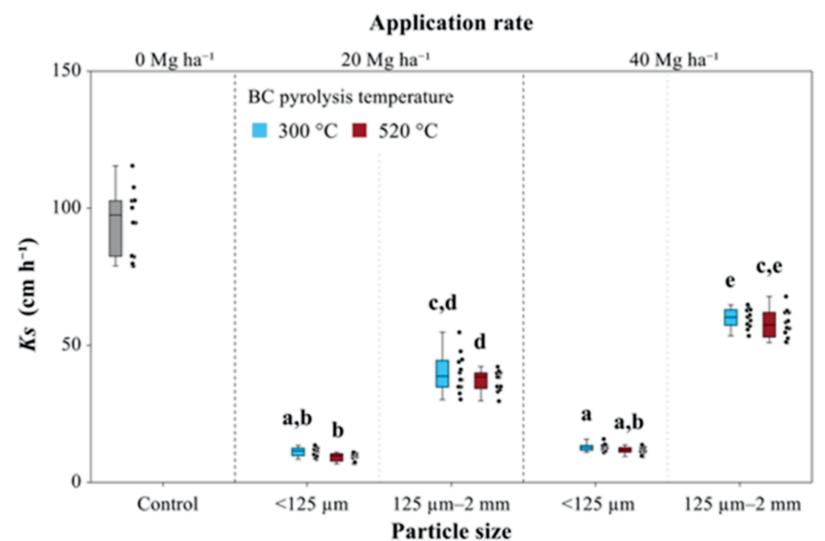
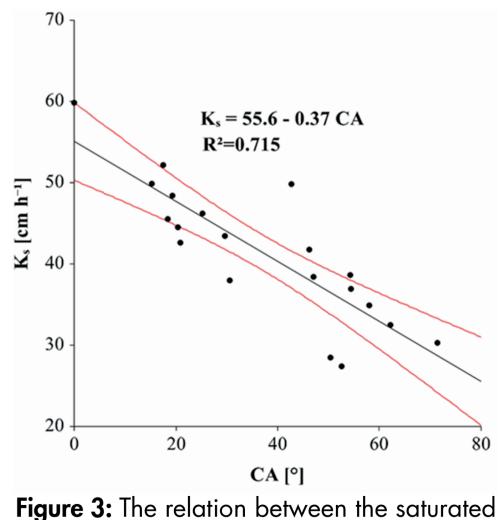



Figure 2: Measured values of the saturated hydraulic conductivity (K_s) for all treatments of the experiment. (Source: Vitková et al., 2024)

hydraulic conductivity (K_s) and contact angle (CA), in sandy soil amended with wettable and hydrophobic biochars. (Source: Šurda et al., 2025).

CONCLUSION

Biochar, a highly porous carbon-rich amendment, possesses desirable soil amendment properties due to its inherent structural characteristics; however, its influence on Soil Water Repellency (SWR) requires critical evaluation. A subtle, biochar-induced elevation in the contact angle (CA) was found to be inversely and highly correlated with the soil's saturated hydraulic conductivity (K_s). This implies that a marginal increase in soil hydrophobicity can significantly impair the hydrologic efficiency and transmissivity of the soil matrix.